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Multi-mode models of flow and of solute
dispersion in shallow water. Part 3.

Horizontal dispersion tensor for velocity

By R O N A L D S M I T H
Mathematical Sciences, Loughborough University, LE11 3TU, UK

(Received 24 July 1995 and in revised form 16 April 1997)

Svendsen & Putrevu (1994) revealed that the much larger off-shore than vertical
effective viscosity for longshore currents is the consequence of a shear dispersion
mechanism. The multi-mode representation for the flow gives a mathematical frame-
work within which a more general derivation can be made. It is shown that to a first
approximation the horizontal shear dispersion tensor for velocity is the same as that
for solutes.

1. Introduction
It is an important breakthrough when a large empirical term in a widely used model

equation is found to be a derivable consequence of the underlying physics. This is
what Svendsen & Putrevu (1994) have done for the shallow water (vertically averaged)
momentum equations. They were concerned that to reproduce the observed longshore
currents, the necessary off-shore eddy viscosities are factors of 35 to 70 times larger
than the vertical eddy viscosities needed to reproduce the vertical structure of the flow.
A similar disparity for solute spreading had been explained by Elder (1959) as an
instance of the Taylor (1953) shear dispersion mechanism. Svendsen & Putrevu (1994)
showed that for longshore currents there is indeed a shear dispersion mechanism
which gives an effective off-shore eddy viscosity of a suitably large magnitude.

An apparently idiosyncratic aspect of the flow model used by Svendsen & Putrevu
(1994) is the allowance for a non-zero slip velocity at the bed. In their calculations
without the slip there is zero vertical shear, zero off-shore eddy viscosity and the
agreement with observations is lost. One purpose of the present calculations is to
re-derive the results obtained by Svendsen & Putrevu (1994) in the context of a more
conventional flow model with zero flow at the bed.

Maron (1978) and Yu & Chang (1994) showed that for solute concentrations
the Taylor (1953) shear dispersion model can be interpreted as being an accurate
single-mode reduction, in a frame of reference moving at the speed appropriate
to that mode, of a multi-mode representation for the concentration. The duality
between multi-mode models of flow and of solute concentrations has been the
theme of the present sequence of papers (Smith 1995a,b, referred to as Parts 1
and 2). In this Part 3, a moving-frame Taylor-type single-mode reduction is derived
for the velocity components. The resulting model equations are a two-dimensional
extension of the work of Svendsen & Putrevu (1994). A nice outcome is that to a first
approximation, empirical horizontal eddy viscosities for the two-dimensional vector
horizontal velocities should be replaced by the shear dispersion tensor for the scalar
concentration of solutes.
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2. Velocity modes
The vertical coordinate σ is the fractional height between the bed (z = −h) and

the water surface (z = ζ):

σ =
z + h

H
with H = h+ ζ. (2.1a , b)

As in Svendsen & Putrevu (1994) and in Parts 1 and 2, we assume that the vertical
exchange of momentum can be approximated in terms of a reference eddy viscosity

ν(x, y, σ, t) = N(x, y, t)ν̂(σ) + ν ′. (2.2)

N gives the magnitude and ν̂ the shape of the reference eddy viscosity. The selection of
N or ν ′ to minimize error is given later in equation (3.3). The work of Jansons & Rogers
(1995) illustrates that despite the stochastic character of the vertical mixing being
lumped into an eddy diffusivity, the outcome of a long-term horizontal dispersion
coefficient can be qualitatively and quantitatively robust. Empiricism in the modelling
of ν or the use of second-order turbulence models is likewise beyond the scope of the
present paper (Hutton, Smith & Hickmott 1987).

The forced horizontal velocity components u, v are represented in terms of infinite
series of free velocity modes:

u =

∞∑
m=0

u(m)(x, y, t)Φ(m)(σ), v =

∞∑
m=0

v(m)(x, y, t)Φ(m)(σ) . (2.3a , b)

In the context of the work of Svendsen & Putrevu (1994), u would be the off-shore
under-tow and v the longshore current. The primary flow (u(0), v(0)) will be associated
with the zero modes and the secondary flow with the smaller-amplitude higher modes.
However, a non-zero presence of the higher modes is found to be vital for there to
be horizontal dispersion of the velocity.

When there is non-zero surface shear stress, σ-differentiation of the representations
(2.3a, b) violates the convergence. The same conceptual difficulty arises in ‘shallow
water’ models when vertically uniform velocities are used to model flows with no-slip
at the bed and non-zero surface shear stress. As in traditional Galerkin methods,
integration by parts with respect to σ will be used to avoid any need for direct
representation of velocity derivatives. Hence, surface shear stress is accommodated in
the amplitudes u(m), v(m) rather than by modifying the choice of modes Φ(m)(σ).

The free modes Φ(m)(σ), for the decay of unforced motion in the water, satisfy the
eigenvalue problem (Part 1, equation (3.1); Part 2, (2.6)):

d

dσ

(
ν̂

dΦ(m)

dσ

)
+ µ(m)Φ(m) = 0, (2.4a)

with

Φ(m) = 0 on σ = 0, ν̂
dΦ(m)

dσ
= 0 on σ = 1, (2.4b, c)∫ 1

0

Φ(m)2dσ = 1 , µ(m) =

∫ 1

0

ν̂

(
dΦ(m)

dσ

)2

dσ, (2.4d , e)∫ 1

0

Φ(m)Φ(n)dσ = 0 for m6=n , and 0 < µ(0) < µ(1) < . . . (2.4f , g)

The boundary conditions (2.4b, c) for the free modes correspond to zero slip at the
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bed and zero stress at the water surface. If any forcing were to vanish, the successive
amplitudes u(m), v(m) would decay in time at the increasing rates µ(m)N/H2.

We recall (Phillips 1957; Davies 1987; Part 1, (3.2c)) that the use of topography-
following sigma-coordinates does not totally eliminate vertical velocities. The auxiliary
modes needed to represent the vertical velocity involve σ-integrals:

ω(m)(σ) = σ

∫ 1

σ

Φ(m)dσ′ − (1− σ)

∫ σ

0

Φ(m)dσ′. (2.5)

In a multi-mode interpretation of shear dispersion for solute concentrations (Maron
1978; Yu & Chang 1994), it is the slow response and large amplitude of the m = 0
mode that distinguishes it. In a frame of reference moving at the appropriate speed,
small systematic terms in the equation for the zero concentration mode can accumulate
to large consequences. The classical example is the Taylor (1953) shear dispersion
mechanism. By contrast, for the higher modes the response to small forcing terms is
smaller, more immediate and easier to calculate.

3. Separation between the zero and higher modes
For laminar flows there is only a factor 4: 9 disparity between the decay rates µ(0)

and µ(1) of the zero and first velocity modes (Part 1, (5.3b)). Hence a Taylor dispersion
model for velocity would not be justifiable. However, for turbulent open-channel
flows the velocity modes do exhibit a more suitable 1: 12 separation in response rates
between the m = 0 and higher modes (Part 2, (2.6d)). We introduce a small parameter
ε to characterize both the departure from unity of Φ(0) and the small value of µ(0):

Φ(0) = 1 + εΦ
(0)
1 (σ) + ε2Φ

(0)
2 (σ) + . . . , µ(0) = εµ

(0)
1 + . . . . (3.1a , b)

For the higher modes the zero approximation Φ
(m)
0 (σ), µ(m)

0 are the solute modes
(Maron 1978) and satisfy a zero-flux bed condition. To satisfy the no-slip boundary
condition for velocities (2.4b) the correction terms Φ(m)

j need to become nearly singular
at the bed σ = 0 (i.e. near the bed the eddy viscosity becomes exceedingly small).
Svendsen & Putrevu (1994) allow instead for a slip velocity at the bed.

If the series (3.1) is substituted into equations (2.4a,d,e) and (2.5) then success-
ive powers of ε yield numerous results. Those results required for the subsequent
calculations are

dΦ(0)
1

dσ
= µ

(0)
1

(1− σ)

ν̂
,

∫ 1

0

Φ
(m)
0 dσ = 0 , εµ

(0)
1

∫ 1

0

(1− σ)2

ν̂
dσ = 1 + . . . , (3.2a , b, c)

∫ 1

0

ω
(m)
0

dΦ(m)
0

dσ
dσ = 1 (m 6= 0) ,

∫ 1

0

Φ
(m)
1 dσ =

µ
(0)
1

µ
(m)
0

Φ
(m)
0 (0). (3.2d , e)

The ε-factor in (3.2c) counterbalances the near singularity of the integral near the
bed.

In the representation (2.2), perturbing the mismatch ν ′ for fixed ν is equivalent to
perturbing the choice of the reference shape ν̂(σ). It follows from equation (3.2c) that
a small perturbation does not influence the decay rate εµ(0)

1 for the zero velocity mode
if ∫ 1

0

ν ′
(

1− σ
ν̂

)2

dσ = 0. (3.3)

Mismatch near the bed is given much more weight than mismatch near the surface.
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For bed-generated turbulence the classical von Kármán shape for the eddy viscosity,
as used by Elder (1959) and in Part 2, is

ν̂ = (1− σ)(σ + exp (−ε−1)) ,

∫ 1

0

ν ′

(σ + exp (−ε−1))2
dσ = 0, (3.4a , b)

Φ
(0)
1 = 1 + ln (σ + exp (−ε−1)) , µ

(0)
1 = 1, (3.4c, d )

Φ
(m)
0 = (2m+ 1)1/2Pm(2σ − 1) , µ

(m)
0 = m(m+ 1), (3.4e, f )

where Pm are Legendre polynomials. For a friction velocity to bulk velocity ratio of
1:15 and a von Kármán constant 0.4, we have ε = 1/6 and the ratio εµ(0)

1 : µ(1)
0 is 1:12.

For surface-generated turbulence an alternative exactly solvable model is

ν̂ = (1− σ/2)(σ + exp (−ε−1)) ,

∫ 1

0

ν ′

(σ + exp (−ε−1))2

(
1− σ

1− σ/2

)2

dσ = 0, (3.5a , b)

Φ
(0)
1 = 2− 2 ln 2 + ln (σ + exp(−ε−1)) + ln(2− σ) , µ

(0)
1 = 1, (3.5c, d )

Φ
(m)
0 = (4m+ 1)1/2P2m(σ − 1), µ

(m)
0 = m(2m+ 1). (3.5e, f )

In Part 2 (§6 and figure 3) these two solvable models (3.4), (3.5) are used to
demonstrate that the constraint (3.3) makes the modelling robust with respect to any
ν ′ mismatch. In the present calculations, the use of modes enables us to use equations
derived in Parts 1 and 2 to facilitate the derivation of velocity dispersion formulae
which do not involve the higher modes. Thus, there is no requirement that the modes
be known explicitly, only that ν̂ has a shape appropriate to the flow being studied
and that the zero-mode decay rate εµ(0)

1 is accurately known.

4. Zero-mode equations
With the ε-expansions (3.1), (3.2), the leading-order terms in the vertically integrated

mass conservation equation (Part 2, (3.1a)) take the familiar shallow water form

∂ζ

∂t
+

∂

∂x
(Hu(0)) +

∂

∂y
(Hv(0)) = H

∫ 1

0

Qdσ. (4.1)

Q(x, y, σ, t) is the volumetric discharge rate for any sources of water. Correct to order
ε2, the velocity components u(0), v(0) are the same as the vertically averaged velocity.

Correct to leading order in ε, the Φ(0) component of the horizontal momentum
equations (Part 1, (3.4a,b); Part 2, (3.3a,b)) can be written

∂

∂t
(Hu(0)) +

∂

∂x
(Hu(0)2) +

∂

∂y
(Hv(0)u(0)) +

∞∑
m=1

{
∂

∂x
(Hu(m)2) +

∂

∂y
(Hv(m)u(m))

}

−Hfv(0) + εµ
(0)
1

N

H
u(0) = −H

{
1

ρ0

∂P

∂x
+ g

∂ζ

∂x

}
+
τ1

ρ0

+H

∫ 1

0

F1dσ, (4.2a)

∂

∂t
(Hv(0)) +

∂

∂x
(Hu(0)v(0)) +

∂

∂y
(Hv(0)2) +

∞∑
m=1

{
∂

∂x
(Hu(m)v(m)) +

∂

∂y
(Hv(m)2)

}

+Hfu(0) + εµ
(0)
1

N

H
v(0) = −H

{
1

ρ0

∂P

∂y
+ g

∂ζ

∂y

}
+
τ2

ρ0

+H

∫ 1

0

F2dσ. (4.2b)
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Here f is the Coriolis frequency, P atmospheric pressure, ρ0 reference water density,
g gravitational acceleration and (τ1, τ2) are surface wind stresses. The additional
forcing terms F1, F2 are defined

F1 = M1 − Q
∞∑
m=0

u(m)Φ
(m)
0 −

gH

ρ0

∫ 1

σ

∂ρ′

∂x
dσ′ − g∂H

∂x

∫ 1

σ

(1− σ′)∂ρ
′

∂σ′
dσ′, (4.3a)

F2 = M2 − Q
∞∑
m=0

v(m)Φ
(m)
0 −

gH

ρ0

∫ 1

σ

∂ρ′

∂y
dσ′ − g∂H

∂y

∫ 1

σ

(1− σ′)∂ρ
′

∂σ′
dσ′. (4.3b)

The body forces (M1, M2) can result from momentum of any water sources and
(if wave motions have been time-filtered out) from gradients of the wave-related
radiation stress (Longuet-Higgins & Stewart 1964). The density changes ρ′ may be
linked to solute concentrations (heat or salt). The (u(m), v(m)) summations in equations
(4.2a,b) represent the effect upon the primary flow (u(0), v(0)) of any secondary flow.
The neglect of the higher-mode summations results in the conventional shallow water
momentum equations without any horizontal eddy viscosity terms.

At first sight it might appear that by virtue of the ε multiplier, the decay term in
equations (4.2a, b) can be neglected. However, the dominant zero-mode nonlinearity
can be removed simply by the expedient of using a frame of reference moving at the
zero mode velocity (u(0), v(0)). If in such a frame the forcing terms vary sufficiently
slowly (i.e. on a longitudinal length scale comparable with or longer than the decay
distance 225H) then, despite the ε multiplier, the decay terms do need to be retained.

In the context of solute dilution, Taylor(1953) recognized the need to use a moving
frame in order to focus attention upon the small dispersion terms. Maron (1978) and
Yu & Chang (1994) showed how the shear dispersion coefficient for solutes could be
calculated in such a moving frame from the higher-mode summation terms. The next
two sections do likewise for momentum.

5. Simplified equations for the higher modes

The full equations (Part 1, (3.4a,b); Part 2, (3.3c,d)) for u(m), v(m) are formidably
complicated. However, the integrals (3.2a–e) and the smallness of u(m), v(m) relative to
u(0), v(0) allows us to consider the simplified equations:

Du(m)

Dt
+ u(m)

{
µ

(m)
0

N

H2
− 1

2H

DH

Dt
+

3

2

∫ 1

0

Qdσ +
1

2

∂u(0)

∂x
− 1

2

∂v(0)

∂y

}

+v(m)

{
∂u(0)

∂y
− f
}

= F
(m)
1 , (5.1a)

Dv(m)

Dt
+ v(m)

{
µ

(m)
0

N

H2
− 1

2H

DH

Dt
+

3

2

∫ 1

0

Qdσ − 1

2

∂u(0)

∂x
+

1

2

∂v(0)

∂y

}

+u(m)

{
∂v(0)

∂x
+ f

}
= F

(m)
2 , (5.1b)
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where

F
(m)
1 = −ε µ

(0)
1

µ
(m)
0

Φ
(m)
0 (0)

{
1

ρ0

∂P

∂x
+ g

∂ζ

∂x

}
+

τ1

Hρ0

Φ
(m)
0 (1) +

∫ 1

0

Φ
(m)
0 F1dσ, (5.1c)

and

F
(m)
2 = −ε µ

(0)
1

µ
(m)
0

Φ
(m)
0 (0)

{
1

ρ0

∂P

∂y
+ g

∂ζ

∂y

}
+

τ2

Hρ0

Φ
(m)
0 (1) +

∫ 1

0

Φ
(m)
0 F2dσ. (5.1d )

Here the advected derivative D/Dt is defined in terms of the zero-mode flow:

D

Dt
=

∂

∂t
+ u(0) ∂

∂x
+ v(0) ∂

∂y
. (5.2)

If the forcing were to vanish, the amplitudes u(m), v(m) would decay in time at the rates
µ

(m)
0 N/H2 (at least 12 times more rapidly than the zero mode, on horizontal distances

of order 20H). In the moving frame of reference when the forcing varies slowly, the
amplitudes u(m), v(m) are correspondingly much smaller than u(0), v(0).

The pressure gradient, surface wind stresses, momentum from water souces, wave-
related radiation stress, and density changes all contribute to the forcing (F (m)

1 , F
(m)
2 )

for the higher modes. The relative sizes of the different driving forces in equations
(5.1c, d) may be such that the pressure gradient contributions may be significant
(despite the ε factor). For example, in the work of Svendsen & Putrevu (1994) the
other terms are zero: there is no wind stress and the wave-related forcing F1 is
independent of σ, so has zero Φ(m)

0 -weighted integral.
In equations (5.1a, b) horizontal derivatives of the zero-mode velocity components

u(0), v(0) have been written in a symmetric form by the use of the mass conservation
equation (4.1). Further symmetrization could be achieved by combining the Coriolis
and vertical vortical components of angular velocity

f̂ = f + 1
2

{
∂v(0)

∂x
− ∂u(0)

∂y

}
. (5.3)

However, attention will be restricted to tidal or higher-frequency flows, in which the

Coriolis effect upon the secondary flow is small and the introduction of f̂ is not
necessary.

With the D/Dt terms neglected, equations (5.1a, b) become simultaneous linear
equations for u(m), v(m). Away from discharges (i.e. neglecting Q), when the horizontal
velocity gradients and the Coriolis frequency f are small relative to N/H2, the
solutions are

u(m) = u
(m)
E − 1

2

{
∂u(0)

∂x
− ∂v(0)

∂y

}
H2u

(m)
E

µ
(m)
0 N

−
{
∂u(0)

∂y
− f
}
H2v

(m)
E

µ
(m)
0 N

+ . . . , (5.4a)

v(m) = v
(m)
E + 1

2

{
∂u(0)

∂x
− ∂v(0)

∂y

}
H2v

(m)
E

µ
(m)
0 N

−
{
∂v(0)

∂x
+ f

}
H2u

(m)
E

µ
(m)
0 N

+ . . . , (5.4b)

u
(m)
E =

H2F
(m)
1

µ
(m)
0 N

, v
(m)
E =

H2F
(m)
2

µ
(m)
0 N

. (5.4c, d )

Here u(m)
E , v

(m)
E are equilibrium approximations in the moving frame of reference for

the directly forced secondary flow. The Coriolis effect and the horizontal straining of
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the primary flow perturb that basic secondary flow (tidal excursions and horizontal
scales assumed to be of order 225H).

6. Dispersion equations for the velocity components
In imitating solute dispersion calculations (Maron 1978; Yu & Chang 1994) the

crucial terms in the momentum equations (4.2a, b) are the quadratic summation
terms involving the higher modes u(m), v(m). The approximations (5.4a, b) lead to the
expressions

∞∑
m=1

u(m)2 = R11 − D11

{
∂u(0)

∂x
− ∂v(0)

∂y

}
− 2D12

{
∂u(0)

∂y
− f
}

+ . . . , (6.1a)

∞∑
m=1

u(m)v(m) = R12 − D11

{
∂v(0)

∂x
+ f

}
− D22

{
∂u(0)

∂y
− f
}

+ . . . , (6.1b)

∞∑
m=1

v(m)2 = R22 + D22

{
∂u(0)

∂x
− ∂v(0)

∂y

}
− 2D12

{
∂v(0)

∂x
+ f

}
+ . . . . (6.1c)

where the momentum fluxes Rij and effective horizontal viscosities Dij are given by

R11 =

∞∑
m=1

u
(m)
E

2
, R12 =

∞∑
m=1

u
(m)
E v

(m)
E , R22 =

∞∑
m=1

v
(m)
E

2
, (6.2)

D11 =
H2

N

∞∑
m=1

u
(m)
E

2

µ
(m)
0

, D12 =
H2

N

∞∑
m=1

u
(m)
E v

(m)
E

µ
(m)
0

, D22 =
H2

N

∞∑
m=1

v
(m)
E

2

µ
(m)
0

. (6.3)

The notation Rij is reminiscent of the notation Sij used by Longuet-Higgins & Stewart
(1964) for the physically similar time-averaged momentum fluxes associated with the
short waves. The stronger the equilibrium secondary flow in a particular direction,
the larger the effective horizontal viscosity in that direction.

To the order of the approximations (5.4a, b) the effective horizontal viscosities Dij
are equal to the shear dispersion coefficients for solutes (Maron 1978, equation 33).
Thus, to evaluate Dij direct use can be made of previous investigations of shallow
water solute dispersion such as Elder (1959) and Part 2. For solutes, horizontal shear
dispersion coefficients are many times larger than vertical turbulent eddy diffusivities.
Thus, effective horizontal viscosities are equally large (Svendsen & Putrevu 1994).

The corresponding formulation of the zero-mode momentum equations (4.2a, b),
with mixed derivative terms written symmetrically, is

H

(
Du(0)

Dt
+ εµ

(0)
1

N

H2
u(0) − fv(0)

)
− ∂

∂x

(
HD11

∂u(0)

∂x
+HD12

∂u(0)

∂y

)

− ∂

∂y

(
HD12

∂u(0)

∂x
+HD22

∂u(0)

∂y

)

= −H
{

1

ρ0

∂P

∂x
+ g

∂ζ

∂x

}
+
τ1

ρ0

+H

∫ 1

0

F1dσ−
∂

∂x
(HR11)−

∂

∂y
(HR12)+ . . . , (6.4a)
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H

(
Dv(0)

Dt
+ εµ

(0)
1

N

H2
v(0) + fv(0)

)
− ∂

∂x

(
HD11

∂v(0)

∂x
+HD12

∂v(0)

∂y

)
− ∂

∂y

(
HD12

∂v(0)

∂x
+HD22

∂v(0)

∂y

)

= −H
{

1

ρ0

∂P

∂y
+ g

∂ζ

∂y

}
+
τ2

ρ0

+H

∫ 1

0

F2dσ −
∂

∂x
(HR12)−

∂

∂y
(HR22) + . . . . (6.4b)

Thus, in accord with the work of Svendsen & Putrevu (1994, equation 2.26), there is
shear dispersion of the velocity. The Dij terms quantify the feedback from horizontal
straining of the primary flow via the perturbed secondary flow. The Rij terms quantify
the re-distribution of momentum by the equilibrium secondary flow and are written as
right-hand-side forcing terms. The dots signify terms which are smaller than similar
retained terms (e.g horizontal derivatives of HfDij neglected relative to Hfu(0) or
Hfv(0)).

7. Integral formulae for the shear dispersion coefficients
We define equilibrium approximations for the directly forced secondary flow:

u′ =

∞∑
m=1

u
(m)
E Φ

(m)
0 (σ), v′ =

∞∑
m=1

v
(m)
E Φ

(m)
0 (σ), (7.1a , b)

where the higher-mode amplitudes u(m)
E , v

(m)
E are defined in equation (5.4c,d). If in the

full momentum equations (Part 1, (2.9a,b)) we retain just those terms corresponding
to the approximations (5.4c,d) and allow for the removal of the zero mode, then we
arrive at the greatly simplified equations and boundary conditions:

− N

H2

∂

∂σ

(
ν̂
∂u′

∂σ

)
= F1 −

∫ 1

0

F1dσ
′ − τ1

Hρ0

+ εµ
(0)
1

{
1

ρ0

∂P

∂x
+ g

∂ζ

∂x

}
, (7.2a)

− N

H2

∂

∂σ

(
ν̂
∂v′

∂σ

)
= F2 −

∫ 1

0

F2dσ
′ − τ2

Hρ0

+ εµ
(0)
1

{
1

ρ0

∂P

∂y
+ g

∂ζ

∂y

}
, (7.2b)

N

H2
ν̂
∂u′

∂σ
→ εµ

(0)
1

{
1

ρ0

∂P

∂x
+ g

∂ζ

∂x

}
and

N

H2
ν̂
∂v′

∂σ
→ εµ

(0)
1

{
1

ρ0

∂P

∂y
+ g

∂ζ

∂y

}
as σ → 0,

(7.2c, d )

N

H2
ν̂
∂u′

∂σ
→ τ1

Hρ0

and
N

H2
ν̂
∂v′

∂σ
→ τ2

Hρ0

as σ → 1, (7.2e, f )

with ∫ 1

0

u′dσ = 0 ,

∫ 1

0

v′dσ = 0. (7.2g , h)

In the frame of reference moving with the dominant primary flow (u(0), v(0)) the time
response for the directly forced secondary flow is approximated as being immediate.
It deserves comment that the boundary conditions (7.2c, d) at the bed do admit slip .
So, it may not be a coincidence that the discovery by Svendsen & Putrevu (1994) of a
shear dispersion mechanism for velocity was in the context of a flow model with slip.

The normalization (2.4d) and orthogonality (2.4f) of the modes Φ(m)
0 allows us to

identify the summations (6.2) and (6.3) for the momentum fluxes and shear dispersion
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coefficients with the vertical integrals:

R11 =

∫ 1

0

u′
2
dσ, R12 =

∫ 1

0

u′v′dσ, R22 =

∫ 1

0

v′
2
dσ, (7.3a , b, c)

D11 =
H2

N

∫ 1

0

{∫ σ

0

u′dσ′
}2

dσ

ν̂
, D22 =

H2

N

∫ 1

0

{∫ σ

0

v′dσ′
}2

dσ

ν̂
, (7.4a , b)

D12 =
H2

N

∫ 1

0

{∫ σ

0

u′dσ′
}{∫ σ

0

v′dσ′
}

dσ

ν̂
. (7.4c)

There are further simplifications in equations (7.2), (7.3), (7.4) if we were to neglect
the mismatch ν ′ and replace Nν̂ by the eddy viscosity ν.

In a different style of calculation (numerical or analytical), in which the secondary
flow u′, v′ is calculated directly, the integral formulae (7.3), (7.4) provide a convenient
alternative to the summations (6.2), (6.3). Equation (7.4a) is equivalent to one of
the central results of Svendsen & Putrevu (1994, equation 2.22) for the effective
longitudinal viscosity. Equations (7.4b,c) give the two-dimensional extension.

It is reasonable to suppose that an alternative derivation might be made of the
zero-mode equations (6.4), the equilibrium secondary flow equations (7.2) and the
dispersion integrals (7.3), (7.4) , without the need to invoke any but the zero mode.
The zero velocity mode cannot be avoided because of the repeated appearances of
the decay rate εµ(0)

1 .

8. Concluding remarks
In view of the complexity and generality of the physical processes modelled,

the simplicity of the shear dispersion equations (6.4a,b) for the horizontal velocity
components is striking. In particular, the shear dispersion tensor Dij is the same for
both velocity components as for solutes and there are no diffusive terms cross-linking
the two velocity components u(0), v(0). Thus, established results (Elder 1959) for the
horizontal solute dispersion tensor in shallow water flows also yield the effective
horizontal viscosities.
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